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LATEST DEVELOPMENTS IN LIVE Z-SCORE TRAINING: SYMPTOM CHECK LIST,
PHASE RESET, AND LORETA Z-SCORE BIOFEEDBACK

Robert W. Thatcher

EEG and NeuroImaging Laboratory, Applied Neuroscience Research Institute,
St. Petersburg, Florida, USA

Advances in neuroscience are applied to the clinical applications of EEG neurofeedback by
linking symptoms to functional networks in the brain. This is achieved by reviews of the last
20 years of functional neuroimaging studies of brain networks related to clinical disorders
based on positron emission tomography, functional MRI, diffusion tensor imaging, and
EEG/MEG inverse solutions. Considerable consistency exists between different imaging mod-
alities because of the property of functional localization and the existence of large clusters of
connections in the brain representing network modules and hubs. Reviewed here is new
method of EEG neurofeedback called Z-Score Neurofeedback, and it is demonstrated how
real-time comparison to an age-matched population of healthy subjects simplifies protocol
generation and allows clinicians to target modules and hubs that indicate dysregulation and
instability in networks related to symptoms. Z-score neurofeedback, by measuring the dis-
tance from the center of the healthy age-matched population, increases specificity in operant
conditioning and provides a guide by which extreme Z-score outliers are linked to symptoms
and then reinforced toward states of greater homeostasis and stability. The goal is increased
efficiency of information processing in brain networks related to the patient’s symptoms. The
unique advantage of EEG over other neuroimaging methods is high temporal resolution in
which the fine temporal details of phase lock and phase shift between large masses of neurons
is quantified and can be modified by Z-score neurofeedback to address the patient’s symp-
toms. The latest developments in Z-score neurofeedback are a harbinger of a bright future
for clinicians and, most important, patients that suffer from a variety of brain dysfunctions.

SPECIFICITY AND GOOD CLINICAL
OUTCOME WITH FEWER SESSIONS

The last 60 years of EEG biofeedback have
resulted in a wide range of biofeedback
approaches, but many report good clinical
outcomes only after 40 to 80 sessions. This
includes evidenced-based medicine (EBM) stu-
dies using sham controls and=or blind designs
that typically require 40 sessions or more to
achieve a good clinical outcome (Arns, de
Ridder, Strehl, Breteler, & Coenen, 2009;
Wangler et al., 2011). The scientific reality of
EEG biofeedback has been well established
since the 1940s, as reviewed by Sherlin et al.

(2011) and Thatcher (2012). However, the
challenge today is to achieve good clinical
outcomes in fewer than 40 to 80 sessions. An
important fact is that real-time fMRI neurofeed-
back can achieve modification of blood flow
in specific brain regions in one 20-min session
(see Dr. Niels Birbaumer explain why only
20min is required at the GoCognitive website;
GoCognitive, n.d.-a, n.d.-b). The reason that a
single 20-min session achieves clinical change
is because of adherence to the principles
of specificity and contingency in operant
conditioning (Balleine & Dickinson, 1998;
Balleine, Liljeholm, & Ostlund, 2009; Balleine
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& Ostlund; 2007; Schultz, 2006). For example,
the fMRI neurofeedback method targets a sin-
gle Brodmann area of the brain linked to the
patient’s symptoms. In contrast, surface EEG is
diffuse and less specific; for example, the EEG
recorded from a single scalp location (e.g., Cz)
senses sources from widespread regions of
the brain and is a mixture of many different
frequencies. Use of surface Z scores improves
specificity by isolating dysregulated locations
and rhythms, especially when using Laplacian
transformed Z scores. Comparable specification
and localization, as in fMRI, is achieved by
LORETA Z-score neurofeedback. For example,
clinical experience suggests that LORETA
Z-score neurofeedback often produces results
in one 20-min session like fMRI neurofeedback
because EEG source localization has accuracies
of about 1 cm to 3 cm and thus is much more
specific than is surface EEG (see Applied
Neuroscience, n.d.). Hence, targeting specific

‘‘hubs’’ and ‘‘modules’’ linked to a patient’s
symptoms seems to result in good clinical out-
comes in fewer sessions than does surface
EEG biofeedback (see Thatcher, 2012).

As mentioned previously, the goal of
Z-score biofeedback is to achieve improved
clinical outcome in fewer sessions. The Z-score
approach is more efficient because it is based
on a quantitative EEG (qEEG) assessment in
which a patient’s symptoms and complaints
are linked to functional systems in the brain to
identify the ‘‘weak’’ systems, as defined by Luria
(1973), and then targets the weak systems for
neurofeedback in the same session. Increased
specificity also includes not modifying ‘‘com-
pensatory’’ systems and thereby improves the
efficiency of EEG biofeedback (i.e., fewer ses-
sions with equal or better clinical outcomes in
comparison to non-Z-score biofeedback). Since
2006 there have been a few publications show-
ing good clinical outcomes with 20 or fewer

FIGURE 1. Top row is conventional or standard EEG biofeedback in which different units of measurement are used in an EEG analysis
(e.g., uV for amplitude, theta=beta ratios, relative power 0 to 100%, coherence 0 to 1, phase in degrees or radians, etc.) and the clinician
must ‘‘guess’’ at a threshold for a particular electrode location, frequency range and client age to determine when to reinforce or inhibit a
given measure. The bottom row is Z-score neuofeedback in which different metrics are represented by a single and common metric (i.e.,
the metric of a Z score), and the guess work is removed because all measures are reinforced to move Z scores toward Z¼0, which is the
approximate center of an average healthy brain state based on a reference age-matched normative database in real time.
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sessions using Z-score neuroeedback, and
several new publications are in process (Collura,
Guan, Tarrant, Bailey, & Starr, 2010; Hammer,
Colbert, Brown, & Ilioi, 2011). Figure 1 illustrates
thedifference between conventional EEGneuro-
feedback versus Z-score neurofeedback.

Z-SCORE BIOFEEDBACK—OUTLIERS
AND MINIMIZATION OF UNSTABLE
AND INEFFICIENT NETWORKS

QEEG normative databases are constructed and
validated by using scientific standards such as
sufficient sample size per age group, Gaussian-
ity, clear inclusion=exclusion criteria, no arti-
fact, cross-validation, amplifier matching, and
peer-reviewed publications (John, Prichep, &
Easton, 1987; Thatcher & Lubar, 2008;
Thatcher, North, & Biver, 2008a). On the aver-
age, approximately 95% of healthy normal sub-
jects exhibit EEG values that are within 2 SDs of
the mean of the population and 98.7% are
within 3 SDs. Normative databases provide a
representative sampling of healthy individuals
including high-functioning children and adults.
Comparison to a normal reference population
aids in identifying outliers or extreme scores
that may help the clinician to link symptoms
to dysregulation in the brain. Rarely is just one
electrode or one measure deviant from normal;
instead, deviations from normal, when linked
to symptoms, often occur in clusters of mea-
sures related to networks. However, clinicians
are cautioned to use only normative references
to aid in the evaluation of patients with symp-
toms and not peak performance individuals
who may exhibit extreme scores unrelated to
a clinical problem. Also, clinicians must be care-
ful not to use a Z-score normative database that
fails to match amplifier characteristics and=or
fails to disclose the details of the database (see
Thatcher & Lubar, 2008).

A recent example of a new application of a
normative database is the use of complex
demodulation as a Z-score Joint-Time-
Frequency-Analysis (JTFA) for the purposes of
real-time neurofeedback (Thatcher, 1998,
1999, 2000a, 2000b). The Z score is computed

in microseconds, limited by the sample rate of
the EEG amplifier, and therefore are ‘‘instan-
taneous’’ Z scores. It is necessary under the
principles of operant conditioning that conti-
guity not be too fast because the activation of
dopamine and other neuromodulators is rela-
tively slow and long-lasting. Therefore, a time
interval of 250ms to a few seconds between
the detection of a brain event meeting thresh-
old and the delivery of a reinforcement or the
contiguity interval is commonly used in stan-
dard EEG biofeedback that does not involve
Z scores.

In 2006, the real-time Z-score biofeedback
method was implemented by Brainmaster, Inc.
and by Thought Technology, LLC, and later
by Mind Media, Inc.; Deymed, Inc.; and
EEG Spectrum, Inc., as well as Applied
Neuroscience, Inc. Since 2006, more than
1,200 clinicians have been using Z-score EEG
neurofeedback. All implementations of ‘‘Live
Z Score’’ biofeedback, also called ‘‘real-time Z
score’’ neurofeedback, share the goal of using
standard operant learning methods to modify
synapses in brain networks, specifically net-
works modified by long-term potentiation
(LTP) and N-Methyl-D-Aspartate receptors as
illustrated in Figure 2. Operant conditioning is
known to involve changes in the same
N-Methyl-D-Aspartate receptors that are modi-
fied in LTP; therefore, the unifying purpose of
Z-score biofeedback is to reinforce extreme
scores or outliers toward Z¼ 0 of the EEGwhich
is the statistical ‘‘center’’ or set-point of a group
of healthy normal subjects. The normal subjects
are a reference, as with blood tests for
cholesterol or liver enzymes showing deviation
from normal that serve as indicators to the
clinician who tests hypotheses and uses
multiple tests to derive a diagnosis and select
treatments.

UNIFIED PRINCIPLE OF Z-SCORE
BIOFEEDBACK

All Z-score biofeedback methods are unified by
the goal of modifying outlier Z-scores generated
by the brain toward greater homeostasis and
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fewer extreme and unstable states. Z-score bio-
feedback has its greatest impact on unstable or
dysregulated neural systems because only small
Z-score values are reinforced and unstable sys-
tems that produce extreme Z scores are rein-
forced by the operant or instrumental learning
procedure only when the scores move in the
direction of Z¼ 0. The center of the normal
population or the ideal instantaneous Z¼ 0 is
only a statistical ideal in which homestatic and
balanced systems oscillate around, but never
achieve, perfect Z¼ 0 for the entire system or
subsystems. However, on average, unstable
neural states that produce large Z-score values
(e.g., 5 SDs or 3 SDs, etc.) will be minimized
and stable neural states that are less than 2 stan-
dard deviations will be reinforced. This is the
same process that occurs at a slower speed with
blood tests; for example, a blood test that shows
low blood iron results in ingestion of iron pills

that increases blood iron toward Z¼ 0, which
is the mean of the reference normal population.
In the case of Z-score neurofeedback, the
duration and frequency of unstable states or
periods of dysregulation that are 2 or more stan-
dard deviations are identified to aid linkage of
the ‘‘outliers’’ or extreme neural network EEG
values to symptoms and then to construct a pro-
tocol to target the mostly likely dysregulated
modules and hubs by reinforcing the extreme
outliers in the EEG toward Z¼ 0. In other
words, the reference normative database pro-
vides a method to identify outliers linked to
symptoms while providing a real-time direction
toward increased stability in networks of the
brain linked to those symptoms.

Complex demodulation is an analytic tech-
nique that multiplies a time series by a sine
wave and a cosine wave and then applies a
low pass filter (Granger & Hatanka, 1964;
Otnes & Enochson, 1978). This results in map-
ping of the time series to the unit circle or com-
plex plane, whereby instantaneous power and
instantaneous phase differences and coherence
are computed. Figure 3 is an illustration of com-
plex demodulation to compute instantaneous
power, coherence, and phase differences.

Unlike the Fourier transform, which
depends on windowing and integration over
an interval of time, complex demodulation
computes the instantaneous power and phase
at each time point, and thus an instantaneous
Z score necessarily includes the within-subject
variance of instantaneous electrical activity
as well as the between-subject variance for
subjects of a given age. The summation of
instantaneous Z scores is Gaussian-distributed
and has high cross-validation (Thatcher, North,
& Biver, 2005; Thatcher, Walker, Biver, North,
& Curtin, 2003); however, the individual time
point by time point Z score is always smaller
than the summation due to within subject
variance. The use of within subject variance
results in a more ‘‘conservative’’ estimate of
deviation from normal solely for the purposes
of instantaneous neurofeedback methods.
Figure 4 illustrates the difference between the
‘‘live Z Score’’ (JTFA) versus Fast Fourier
Transform (FFT) Z-score computations.

FIGURE 2. Illustration of long-term potentiation (þ) and long-
term depression (–). Operant conditioning involves modification
of synapses by the action of neuromodulators such as dopamine,
seratonin, acetylcholine, and so on. (From Ed Pigot based on
Kandel, 2006; Nargeot, Baxter, & Byrne, 1999; Nargeot, Baxter,
Patterson, & Byrne, 1999.) (Color figure available online.)
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FIGURE 4. Joint-Time-Frequency-Analysis (JTFA) normative databases are instantaneous and include within session variance plus
between subject variance. In contrast, Fast Fourier Transform (FFT) normative data only contains between subject variance. Thus FFT
Z scores are larger than JTFA Z scores; and a ratio of 2:1 is not uncommon. Note. t¼ time; s¼ subjects; SDt¼ standard deviation for
the within session; SDs¼ standard deviation between subjects. (Color figure available online.)

FIGURE 3. Illustration of complex demodulation to compute Z scores at each time sample. Left is a sine wave input that is multiplied by
the sine and cosine waves at the center frequency of a given frequency band, which transforms the digital time series to the complex
plane. A 6th order Butterworth low-pass filter is used to shift the frequency to zero where power at the center frequency is then calculated
using the Pythagorean theorem. Complex numbers are then used to compute coherence and phase differences between two time series.
(Color figure available online.)
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A standard FFT normative database analysis
should first be computed to identify the elec-
trode locations and EEG features that are most
deviant from normal and that can be linked
to the patient’s symptoms and complaints.
Linking a subject’s symptoms and complaints
(e.g., posttraumatic stress disorder, depression,
schizophrenia, traumatic brain injury, etc.) to
functional localization of the brain is an impor-
tant objective of those who use a normative
database. Linking dysregulation of neural
activity or extreme Z scores in modules and
hubs of the brain known to be related to
function are important facts in the hands of a
trained clinician. Textbooks on functional
localization in neurology and psychiatry are
available to aid the clinician in learning about
the link between a patient’s symptoms and
different brain regions (Clark, Boutros, &
Mendez, 2010; Luria, 1973; Mesulam, 2000;
Tonkonogy & Puente, 2009). A link of the ana-
tomical locations and patterns of a patient’s
extreme Z scores is important in order to derive
clinical meaning from the qEEG.

Once a qEEG normative database analysis
is completed, then one can use a Z-score neu-
rofeedback program to train patients to move
outlier Z scores toward zero or toward the cen-
ter of the age-matched normal population. The
absolute value and range of the instantaneous
Z scores, although smaller than those obtained
using the offline qEEG normative database, are
simply scaled to smaller values and are valid
and capable of being reinforced toward zero.
An advantage of a Z-score neurofeedback pro-
gram is simplification by reducing diverse mea-
sures like power, ratios, coherence, or phase to
a single metric (i.e., the metric of a Z score).
Thus, there is greater standardization and less
guesswork about whether to reinforce or sup-
press coherence or phase differences or power
and so forth at a particular location and parti-
cular frequency band. The difference between
standard or conventional EEG neurofeedback
versus Z-score neurofeedback is shown in
Figure 1.

Figure 5 shows the number of subjects per
year in the Z-Score normative EEG database

FIGURE 5. The number of subjects per age group in the Z score Lifespan EEG reference normative database. The database is a
‘‘life-span’’ database with 2 months of age being the youngest subject and 82.3 years of age being the oldest subject. Two-year means
were computed using a sliding average with 6-month overlap of subjects. This produced a more stable and higher age resolution norma-
tive database and a total of 21 different age groups. The 21 age groups and age ranges, and the number of subjects per age group are
shown in the bar graph. (Color figure available online.)
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(N¼ 727) that spans the age range from 2
months to 82 years of age. It can be seen that
the largest number of subjects are in the younger
ages (e.g., 1–14 years, n¼ 470) when the EEG is
changing most rapidly. A proportionately smaller
number of subjects represents the adult age
range from 14 to 82 years (n¼ 155). To increase
the time resolution of age, sliding averages were
used for age stratification of the instantaneous Z
scores for purposes of EEG biofeedback.
Two-year means were computed using a sliding
average with 6-month overlap of subjects. This
produced a more stable and higher age resol-
ution normative database and a total of 21 differ-
ent age groups. The 21 age groups and age
ranges, and the number of subjects per age
group, are shown in the bar graph in Figure 5.

PHASE RESET AND EEG BIOFEEDBACK

Phase reset (PR) is a process defined by a phase
shift followed by phase lock, which generates
ordered sequences of metastable states as a
core component of information flow in the
brain. Multielectrode recordings and EEG
experiments indicate that brain information
dynamics are a sequence of controllable
instabilities (Breakspear & Williams, 2004;
Freeman, Homes, West, & Vanhatlo, 2006;
John, 2005; Rabinovich, Afraimovich, Christian,
& Varona, 2012; Stam & van Straaten, 2012;
Thatcher, North, & Biver, 2008b, 2009; Varela,
1995). PR occurs in coupled nonlinear oscilla-
tors when there is a sudden phase shift between
oscillators to a new value followed by a period
of phase locking or phase stability, also called
phase synchrony (Pikovsky, Rosenblum, &
Kurths, 2003). The term phase synchrony is syn-
onymous with phase locking; and whether one
refers to phase locking or phase synchrony,
what is important is the fact that there is a pro-
longed period of phase stability following a
phase shift (Tass, 2007). PR is also important
because it results in increased EEG amplitudes
due to increased phase synchrony of synaptic
generators (Cooper, Winter, Crow, & Walter,
1965; Hughes & Curnelli, 2007; Lopes da Silva,
1995; Nunez, 1981, 1995).

JTFA must trade off frequency resolution for
time resolution and vice versa. The complex
demodulation computation is over a frequency
range such as the EEG delta, theta, alpha, and
beta frequency ranges in order to increase the
degrees of freedom in the computation of
coherence. Given today’s computers, less than
a microsecond is needed to calculate the sample
time point by sample time point of phase differ-
ences that forms a new EEG time series of phase
differences between pairs of channels. If the
instantaneous phase difference between two
time series is constant, then the first derivative
of phase differences will approximate zero and
is called phase lock. A significant positive or
negative first derivative of the time series of
instantaneous phase differences represents a
phase shift andmarks the onset of phase locking.

Phase shift is defined by a change in phase
differences, whereas phase lock is defined by
no change in the phase difference between
two oscillators over time. Mathematically, phase
lock is defined as the first derivative equals zero
or at least approximates zero within some
reasonable bound. If there is a sudden change
in phase difference (i.e., large first derivative),
then this is the beginning of a phase shift.
Figure 6 illustrates the concept of phase reset.
Coherence is a measure of phase consistency
or phase clustering on the unit circle as measured
by the length of the unit vector r. The illustration
in Figure 6 shows that the resultant vector r1¼ r2;
therefore, coherence, when averaged over time,
is constant even though there can be a shift in
the phase angle (i.e., phase difference) that
occurs during the summation and average of
the computation of coherence. This illustrates
the advantage of phase differences that are
‘‘instantaneous’’ because computation is at tem-
poral resolution of the sample rate and is not a
statistical average like coherence and a corre-
lation coefficient. This is important because time
domain measures can be correlated with physio-
logical events such as excitatory and inhibitory
postsynaptic potential (i.e., IPSP and EPSP) dura-
tions. Details for computing complex demodu-
lation and instantaneous spectra are described
by Thatcher et al. (2008b) and Thatcher, North,
Neurbrander, et al. (2009).
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Recently, Stam and van Straaten (2012)
reviewed some of the most common phase
synchrony or phase lock measures used today.
They pointed out that the Hilbert transform
and wavelet transform are equivalent and the
most commonly used measures in qEEG. A
second set of measures are based on nonlinear
dynamics that provide generalized synchroni-
zation estimates. A relatively simple unbiased
estimator of generalized synchronization was
developed by Stam and van Dijk (2002) and
Montez, Linkenkaer-Hansen, Van Dijk, and
Stam (2006). However, a limitation of these
types of measures are that they provide only
an estimate of the degree or average amount
of synchrony between two time series and no
information about the temporal duration of
phase lock. Also, these measures fail to detect
phase shift and do not provide temporal mea-

sures of phase shift duration. Phase shift and
phase lock duration in the time domain are
similar to the time domain of physiological
events such as synaptic excitatory and inhibi-
tory synaptic potentials (EPSPs and IPSPs) in
large groups of subjects. An abstract measure
of synchronization is interesting; however, the
ability to relate synaptic potential durations to
EEG phase lock and phase shift durations pro-
vides a more precise and dynamic measure of
information processing. This is why there is
emphasis on the use of complex demodulation
and the Hilbert transform to provide accurate
estimates of phase lock and phase shift duration
with millisecond time resolution.

In general, the magnitude of phase shift is
defined as the difference between the prephase
shift value minus the postphase shift value; if a
sudden and significant phase difference occurs

FIGURE 6. Illustrations of phase reset. Left is the unit circle in which there is a clustering of phase angles and thus high coherence as mea-
sured by the length of the unit vector r. The vector r1¼45� occurs first in time and the vector r2¼10� and 135� occurs later in time. The
transition is between time point 4 and 5 where the first derivative is a maximum. The right displays are a time series of the approximated
first derivative of the instantaneous phase differences for the time series t1, t2, t3, t4 at mean phase angle¼45� and t5,t6,t7, t8 at mean phase
angle¼ 10�. Phase reset is defined as a significant negative or positive first derivative (y’< 0 or y’> 0). The first derivative near zero is when
there is phase locking or phase stability and little change over time. The sign or direction of phase reset is arbitrary since two oscillating
events are being brought into phase synchrony and represent a stable state as measured by EEG coherence independent of direction.
The clustering of stable phase relationships over long periods of time is more common than are the phase transitions. The phase transitions
are time markers of the thalamo-cortical-limbic-reticular circuits of the brain. (From Thatcher et al., 2008b.)
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followed by an extended period of phase
stability, then the point in time when the phase
shift started is the time when the first derivative
exceeded some threshold value (Breakspear &
Williams, 2004; Le Van Quyen et al., 2001;
Rudrauf et al., 2006; Tass, 2007). This point in
time marks the onset of phase reset. EEG phase
shift offset is defined in a reverse manner, and
the onset and offset times define the phase shift
duration. The phase shift duration is typically in
the range of 30ms to 80ms (Buzaski, 2006;
Freeman, Burke, & Homes, 2003; Freeman &
Rogers, 2002). Phase locking or phase stability
that follows a phase shift is often 200ms to
600ms in duration in single cell analyses (Gray,
Konig, Engel, & Singer, 1989) and 200ms to 1 s
in surface recordings (Breakspear & Williams,
2004; Freeman et al., 2006; Freeman & Rogers,
2002). Desynchronization is the opposite of
synchronization and is defined as a shift in the
phase difference of synchronized oscillators and
termination of phase locking. Notice in Figure 6
that both synchronization and desynchronization

start with a phase shift or adjustment but differ in
the sequential order. Figure 7 is an example of
EEG phase reset as computed by the methods
described in Figure 6.

Phase locking is a telltale sign of synchroni-
zation, and this is why Freeman and colleagues
(Freeman et al., 2003; Freeman & Rogers,
2002) and Breakspear and Williams (2004)
and others (Lachaux et al., 2000; Lachaux,
Rodriguez, Martinerie, & Varela, 1999; LeVan
Quyen et al., 2001; Varela, Lachaux,
Rodriguez, & Martinerie, 2001) use phase lock-
ing as a measure of EEG synchronization. Of
importance, neurons rapidly synchronize and
the spatial extent of global or macro function
is about 1 cm to 6 cm using fMRI, PET, EEG=
MEG, multiple unit recordings, and other ima-
ging modalities. This indicates that synchroni-
zation of large groups of pyramidal neurons is
itself a fundamental property of information
processing in the human brain.

Figure 8 is an example of filtered theta
rhythms in the top screen and phase shift and

FIGURE 7. Example from one subject. Top are the EEG phase differences between Fp1-F3, Fp1-C3, Fp1-P3, and Fp1-O1 in degrees.
Bottom are the first derivatives of the phase differences in the top traces in degrees=centiseconds. A first derivative �5�=cs marked
the onset of a phase shift and an interval of time following the phase shift where the first derivative �0 defined the phase synchrony
interval as described in Figure 6. (Color figure available online.)
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phase lock in the bottom screen. Changes in
large amplitude theta rhythms are marked by a
spike in the first derivative of phase differences,
which is a phase shift. Phase lock is dominant
during rhythmic EEG bursts, and the transition
between large amplitude synchrony and desyn-
chrony is marked by a phase shift. Therefore,
there is a direct correspondence between shifts
and durations of rhythmic waves in the surface
EEG and underlying phase shift and phase lock.

LORETA AND COUPLING OF
MODULES AND HUBS

Another important fact is that the axonal con-
nections of the human cortex are arranged in
approximately six basic clusters, referred to as
‘‘Modules,’’ as measured by Diffusion Imaging
Spectroscopy (Hagmann et al., 2008). Recently,
the six fundamental modules measured by MRI
Diffusion Imaging were replicated using qEEG

Low Resolution Electromagnetic Tomography
(LORETA; Thatcher, North, & Biver, 2012).
LORETA is a distributed inverse solution of the
three-dimensional sources of the surface
recorded EEG (see Pascual-Marqui, Michel, &
Lehmann, 1994, for details). Figure 9 shows
LORETA locations of the replicated MRI
Diffusion Imaging modules in Hagmann et al.
(2008). Seventy-one of 71 subjects showed the
same anatomical clustering for Modules 5 and
6, and 70 of 71 subjects showed the same
modular structure for Module 1 (see Thatcher
et al., 2012, for details).

The synaptic density of connections is spa-
tially heterogeneous and clustered with phase
shift and phase lock between clusters or Mod-
ules providing the ‘‘vitality’’ or temporal dynam-
ics of the qEEG as determined in highly stable
loops in thalamo-cortical, cortico-thalamic, and
cortico-cortical connections. Pacemakers and
natural resonance of pyramidal neurons and

FIGURE 8. Top are filtered EEG traces in the theta frequency band (4–7Hz) from Cz, C3 and P3, referenced to linked ears. Bottom is the
first derivative of phase differences between the Cz time series and the time series from the other two electrodes. When the first deriva-
tive of phase differences are flat or approximate zero then this is an example of phase lock. The spikes or sudden change in the first
derivative is a phase shift. Note that phase lock is associated with the high amplitude bursts of theta rhythms in the Top frame and
the reduced amplitude or desynchronized periods are associated with phase shift. (From Thatcher, 2012.) (Color figure available online.)
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loops give rise to stable rhythms that operate like
a ‘‘Carrier Wave’’ in which phase shift of neu-
rons to ‘‘In-Phase’’ with respect to the local field
potential are orchestrated by phase shift and
phase lock mechanisms that are easily measur-
able in real time by standard quantitative qEEG
methods (Buzsaki, 2006; Freeman et al., 2006;
Varela, 1995; Wang, 2002). Distant excitatory
synchronous inputs to functionally localized
and specialized pyramidal neurons shifts
frequency and the phase differences between
different specialized brain regions over a period
of approximately 30ms to 80ms (Thatcher et al.,
2009). A large number of inhibitory interneur-
ons are then excited and hyperpolarize large
numbers of pyramidal neurons for a prolonged
period (e.g., 100ms to 800ms), which is corre-
lated with EEG phase lock duration across
large-scale modules. Mathematical neural net-
work models to simulate EEG phase shift and
phase lock as well as memory based processes
such as LTP and long-term suppression

designate the initiator event at T¼ 0 to be
synchronous with the arrival of long-distance
excitatory inputs suddenly impinging on small
specialized groups of neurons (i.e., local vs. dis-
tant network dynamics). It is the sudden arrival
of excitatory synaptic inputs on the dendrites
of pyramidal neurons that initiates the 10ms
to 80ms phase shift followed by phase lock
(Ermentrout, Galán, & Urban, 2007; Galán,
Ermentrout, & Urban, 2005; Smeal, Ermentr-
out, & White, 2010; Tiesinga & Sejnowski,
2010). These three main models share the pos-
tulate that phase shift is initiated by distant excit-
atory inputs (i.e., cortico-cortical, thalamo-
cortical, cortico-thalamic) onto local pyramidal
neurons reaching maximum in, approximtely,
a 40- to 80-msec interval of time. Phase shift is
immediately followed by phase lock, which is
mediated by a massive synchronous hyperpolar-
zied of pyramidal neurons via recurrent inhi-
bition. Tiesinga and Sejnowski (2010) showed
that large-scale and prolonged changes in

FIGURE 9. The locations of the six Hagmann et al. (2008) Modules as represented by the Key Institute LORETA voxels (Lancaster et al.,
2000; Pascual-Marqui et al., 2004). As per Hagmann et al. (2008), Modules 3 and 4 are the same, but from different hemispheres. (Color
figure available online.)
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membrane potential of millions of neurons
increases the probability of phase lock between
the neurons in a local domain. Cortico-cortical,
thalamic, basal ganglia, limbic, and reticular-
excitatory inputs initiate phase shifts within local
cortical areas. This appears to be an ongoing and
continuous background process and is pervasive
throughout the human central nervous system.

LORETA COHERENCE, PHASE
DIFFERENCES, AND PHASE RESET

Mathematically, the computation of LORETA
coherence and phase differences is the same as
for the surface EEG. The difference is that the
LORETA inverse solution of the location of the
sources of the EEG is used to compute a time

series from the center voxel of each Brodmann
area. Because of the large number of voxels
(e.g., 2,394), it is not possible to compute LOR-
ETA coherence and phase in real time; therefore,
the selection of the center voxel as a representa-
tive voxel is commonly used (see Langer et al.,
2012). This method is justified by the fact that
the Laplacian operator smoothes current density
in nearby voxels and the center voxel is represen-
tative of the average of the voxels that comprise a
Brodmann area. We tested the relationship
between currents from the center voxel of each
Brodmann area and the average of the voxels
that make up each Brodmann area using corre-
lation analyses; we found that the mean corre-
lation between the current density time series
for the center voxel versus the average of voxels

FIGURE 10. Z scores of left and right hemisphere LORETA coherence with respect to Brodmann area 13 in a right hemisphere damaged
patient. Y-axis is the Euclidean distance with respect to Brodmann area 13. The x-axis is frequency bands (D¼ 1–4Hz; T¼4–8Hz;
A1¼8–10Hz; A2¼ 10–12Hz; B1¼ 12–15Hz; B2¼15–18Hz; B3¼18–25Hz; HiB¼25–30Hz). The colors represent the magnitude
of Z scores with blue¼negative Z scores and green to red the positive Z scores (�3 SD). This shows reduced connectivity in the right
temporal lobe, amygdala and hippocampus in the lower frequency bands. The alternating horizontal bands of high and low coherence
reflect the U-shaped cortico-cortical axons that connect different Brodmann areas. (Color figure available online.)
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in each Brodmann area was 0.898 with a sample
size of 1,792 time points and p was less than
.00000000001. The center voxel is, therefore,
representative of the average and is a better
choice than the average of all voxels because cur-
rents from adjacent Brodmann areas will likely
influence the average current density more than
the center voxel current density because of the
distance between the center and the boundary
of adjacent Brodmann areas. Figure 10 is an
example of LORETA coherence Z scores ordered
as a function of distance between Brodmann
area 13 and all other Brodmann areas.

SYMPTOM CHECK LIST LINKAGE
BETWEEN STRUCTURE AND
FUNCTION

Surface EEG

Based on these facts and other supporting
science, a Symptom Check List (SCL) was

developed as shown in Figure 11. The goal of
the SCL is to link structure to function based
on the spatial overlap of functional and clinical
studies using fMRI, PET, and EEG=MEG as well
as the clinical neurological science of strokes,
tumors, and lesions. The SCL generates a scalp
model of likely brain regions expected to be
related to the patient’s symptoms in the
‘‘Hypotheses’’ head. The ‘‘Match’’ head shows
the EEG Z scores in the patient’s record that
match the hypothesized locations, and the
‘‘Mismatch’’ head shows the significant EEG
measures that failed to match the hypothesized
locations. It is possible that the mismatches rep-
resent ‘‘compensatory’’ processes; and, in this
way, one can focus on the most likely ‘‘weak’’
brain systems linked to the patient’s symptoms
as discussed by Alexander Luria (1973). The
‘‘Protocol’’ on the right is a listing of measures
that matched the hypothesized locations and
can be saved in a file and are automatically

FIGURE 11. Example of an Automatic Neurofeedback Protocol generator using a Symptom Check List (SCL) where clinicians conduct a
clinical interview and behavioral tests and then perform a qEEG. The SCL uses the qEEG results and the symptom or diagnosis selected
by the clinician to match deviant qEEG locations to the symptoms. The qEEG results are categorized into two groups: (a) Match of qEEG
assessment to networks related to symptoms, and (b) Mismatch of the qEEG results, which are likely compensatory. One can override
the selections and manually add or remove frequencies and locations. (Color figure available online.)

LIVE Z-SCORE TRAINING 81



available to perform EEG biofeedback. The
second screen is the SCL panel with ‘‘Neurop-
sychological Diagnoses’’ selected.

Loreta

The same scientific literature review of the fMRI,
PET, and EEG=MEG literature that links symp-
toms and neuropsychological diagnoses to func-
tional specialization in the brain was used to
provide a linkage to the three-dimensional
sources of the scalp EEG. We use Low Resol-
ution Electromagnetic Tomographic Analysis,
or ‘‘LORETA,’’ that has a 7mm cubic spatial
resolution and adequately measures all of the
Brodmann areas as evidenced by 795 peer-
reviewed journal articles (these articles can
be found at http://www.appliedneuroscience.
com/LORETA%20publications.pdf).

Similar to the surface EEG SCL, the LORETA
SCL generates a list of Brodmann areas likely to
be related to the patient’s symptoms in the
‘‘Hypotheses’’ in the lower right list. The
‘‘Match’’ list shows the statistically significant
Brodmann areas in the patient’s record that
match the hypothesized locations, and the

‘‘Mismatch’’ shows the Brodmann areas that
failed to match the hypothesized locations. It
is possible that the mismatches represent
‘‘compensatory’’ processes; in this way, one
can focus on the most likely ‘‘weak’’ brain sys-
tems linked to the patient’s symptoms as dis-
cussed by Alexander Luria (1973). Figure 11 is
an example of the SCL panel with the ‘‘Symp-
toms’’ selected and the Brodmann areas selec-
ted based on the match of symptoms and
regions of the brain. Figure 12 is the SCL panel
with ‘‘Neuropsychological Diagnoses’’ selected.

Figure 13 is an example of changes in
Brodmann area EEG across sessions when using
LORETA Z-score neurofeedback. Reinforce-
ment toward increased stability and homeo-
stasis is achieved by reinforcing movement
toward Z¼ 0, which is the statistical center of
a group of age-matched healthy individuals
who had no history of neurological or psycho-
logical disorders. No individual achieves exactly
Z¼ 0; however, the set point of a homeostatic
statistic oscillates around Z¼ 0 and helps
reduce dysregulation in hubs and modules
linked to the patient’s symptoms.

FIGURE 12. Example of an Automatic Neurofeedback Protocol generator using a Symptom Check List (SCL) where clinicians conduct a
clinical interview and behavioral tests and then perform a qEEG. The LORETA SCL uses the qEEG results and the symptom or diagnosis
selected by the clinician to match deviant qEEG Brodmann areas and Hubs to the symptoms. The LORETA assessment results are cate-
gorized into two groups: (a) Match of LORETA assessment to networks related to symptoms, and (b) Mismatch of the LORETA results,
which are likely compensatory. One can override the selections and manually add or remove frequencies and locations. (Color figure
available online.)
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CONCLUSIONS

Z-score neurofeedback represents a significant
advancement in the field of EEG biofeedback
as well as an advancement in EEG and brain
science in general. Z-score neurofeedback
allows practitioners to focus on multiple
variables (e.g., absolute power, coherence,
phase, etc.) while providing standardization
by real-time comparisons to an age-matched
group of healthy individuals. Z-score neuro-
feedback reduces guessing about whether to
reinforce or inhibit a given amplitude or fre-
quency by providing a normative database
guide where one reinforces toward Z¼ 0.
Normal subjects are never exactly at Z¼ 0;
however, they homeostatically oscillate around
Z¼ 0 and rarely exhibit consistently deviant
scores that are many standard deviations from
normal. Outliers and extreme Z scores in a
patient (assuming no artifact and a valid ampli-
fier) are indicators that can facilitate linking
symptoms to networks in the brain. Another
advantage of Z-score biofeedback is that one

does not need to inhibit one frequency while
reinforcing a different frequency because
reinforcement toward Z¼ 0 accomplishes both
at the same time. For example, a patient with
elevated theta and reduced beta frequency
amplitude does not require a separate inhibit
setting because movement toward Z¼ 0
simultaneously normalizes elevated and low
amplitude events. Also, Z-score biofeedback
provides automatic artifact rejection because
artifact creates large Z scores and only Z scores
approaching Z¼ 0 are reinforced. Finally,
LORETA Z-score biofeedback efficiently targets
hubs and modules in the brain known to be
related to symptoms and clinical disorders.
Avoiding compensatory systems while targeting
three-dimensional brain regions linked to
symptoms holds the promise of better clinical
outcome in fewer sessions. LORETA neurofeed-
back has already been shown to match the
efficacy of functional MRI neurofeedback, but
at a fraction of the cost of a 50-ton, $3 million
MRI magnet with costs of $40,000 per month

FIGURE 13. Example of movement of Brodmann area EEG toward Z¼ 0 over sessions. (From NeuroGuide version 2.7.4) (Color figure
available online.)
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for liquid helium. Trends in the neuroscience of
EEG biofeedback paint a bright future in
psychology and psychiatry and EEG neurofeed-
back when it adheres to the principles of oper-
ant conditioning. This trend will continue to
grow and touch the lives of many more patients
in the future (Thatcher, 2011, 2012).
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